

Smart Contract Audit Report

Arbitrum L2

OpenOceanExchange

V 1.0

SC.3e4bdd381049

July 22nd, 2024

Table Of Contents

1 Report Overview	2 -
2 Asset Management Security Assessment	3 -
3 Audit Overview	4 -
3.1 Project Information	4 -
3.2 Audit Information	4 -
3.3 External Visibility Analysis	4 -
3.4 Audit Process	6 -
4 Security Finding Details	
4.1 ProxyAdmin Contract Management Risk	7 -
4.2 Rescue Funds	8 -
4.3 Swap Core Logic	8 -
4.4 SwapGmxV2 Core Logic	
4.5 callUniswapTo Core Logic	
4.6 uniswapV3SwapTo Core Logic	
5 Audit Categories	13 -
6 Explanation Of Vulnerability Rating	15 -
7 Statement	17 -
8 About Binenet	18 -

1 Report Overview

Binenet security team has audited the OpenOceanExchange, no risks was identified in OpenOceanExchange. users should pay attention to the following aspects when interacting with this project.

Contract Code	Function	Security Level	Status	Fix Result
OpenOceanExchangeProxy.sol	upgradeTo	Info	Audited	
OpenOceanExchangeProxy.sol	upgradeToAndCall	Info	Audited	
OpenOceanExchange.sol	rescueFunds	Info	Audited	

*Risk Description: Due to the use of proxy and logical architecture in the contract, the ProxyAdmin contract can achieve real-time upgrade of logical contracts, with a focus on the administrator's ability to handle permission changes.

2 Asset Management Security Assessment

Asset Type	Function	Security Level
User-Mortgaged Token	OpenOceanExchange.rescueFunds	Info
Assets	openoceanExenange.reseact unas	IIIIO
Platform-Mortgaged	On an Ocean Evaluation as massive Evinda	Info
Currency Assets	OpenOceanExchange.rescueFunds	

*Description: Inspect the security measures for the management of digital currency assets within the contract business logic. Look for any security vulnerabilities that might lead to the loss of customer funds, such as improper recording of digital currency assets upon transfer into the contract or accidental transfer of assets out of the contract.

3 Audit Overview

3.1 Project Information

OpenOcean is the leading DEX aggregator, integrating 1000+ liquidity sources across 30+ blockchains into one seamless trading interface, to bring users the best swap returns on their DeFi trading.

This serves as a reference implementation of the OpenOceanExchange standard on the Arbitrum network.

3.2 Audit Information

Project Name	OpenOceanExchange
Platform	Arbitrum
	OpenOceanExchangeProxy
	https://arbiscan.io/address/0x6352a56caadc4f1e25cd6c75970fa768a
Audit Coope	3304e64#code
Audit Scope	OpenOceanExchange
	https://arbiscan.io/address/0xe21328bd90de1433f99512608558ff948
	1d94be2#code
Website	https://openocean.finance/

3.3 External Visibility Analysis

Function	Visibility	State Change	Modifier	Payable	Description
admin	external	false	ifAdmin		OpenOceanExc hangeProxy
changeAdmin	external	true	ifAdmin		
implementation	external	true	ifAdmin		

upgradeTo	external	true	ifAdmin		
upgradeToAndCall	external	true	ifAdmin		
callUniswap	public	true		payable	OpenOceanExc hange
callUniswapTo	public	true		payable	
callUniswapToWit hPermit	external	true			
callUniswapWithP ermit	external	true			
initialize	public	true	initializer	4	
pause	external	true	onlyOwne r		
renounceOwnershi p	public	true	onlyOwne r		
rescueFunds	external	true	onlyOwne r		
swap	external	true	whenNotP aused	payable	
swapGmxV2	external	true	whenNotP aused	payable	
transferOwnership	public	true	onlyOwne r		
uniswapV3Swap	external	true		payable	
uniswapV3SwapCa Ilback	external	true			
uniswapV3SwapTo	public	true		payable	
uniswapV3SwapTo WithPermit	external	true			

3.4 Audit Process

Audit time: From July 19th to July 22nd, 2024.

Audit methods: Static Analysis, Dynamic Testing, Typical Case Testing and Manual

Review.

Audit team: Binenet Security Team.

4 Security Finding Details

4.1 ProxyAdmin Contract Management Risk

Severity Level: Info

Lines: OpenOceanExchangeProxy.sol # L493,L504

Description: According to the business logic, addresses with management privileges can upgrade proxy contract and redirect logical contract. After further auditing, the proxy contract points to the management contract ProxyAdmin [0xC979fEC5] controlled by a single signed EOA [0x9986EE0C] address, which poses a single point of leakage risk. It is recommended to use multi signature addresses to control the ProxyAdmin contract.

```
* NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
492
                                    function upgradeTo(address newImplementation) external virtual ifAdmin {
493
494
                                                 _upgradeTo(newImplementation);
495
 496
497
                                      * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
498
499
                                      * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
500
                                      * proxied contract.
501
                                      * NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
503
504
                                   function \ upgrade To And Call (address \ new Implementation, \ bytes \ call data \ data) \ external \ payable \ virtual \ if Admin \ \{ (address \ new Implementation, \ bytes \ call data \ data) \ external \ payable \ virtual \ if Admin \ \{ (address \ new Implementation, \ bytes \ call data \ data) \ external \ payable \ virtual \ if Admin \ \{ (address \ new Implementation, \ bytes \ call data \ data) \ external \ payable \ virtual \ if Admin \ \{ (address \ new Implementation, \ bytes \ call data \ data) \ external \ payable \ virtual \ if Admin \ \{ (address \ new Implementation, \ bytes \ call data \ data) \ external \ payable \ virtual \ if Admin \ \{ (address \ new Implementation, \ bytes \ call data \ data) \ external \ payable \ virtual \ if Admin \ \{ (address \ new Implementation, \ bytes \ call \ data) \ external \ payable \ virtual \ if Admin \ qualified \ payable 
                                                  _upgradeTo(newImplementation);
505
506
                                                 Address.functionDelegateCall(newImplementation, data);
```

The following is one of the upgrade logs for logical contract:

https://arbiscan.io/tx/0x28bb61516f010c745b208dfd468ea1cac683d4fca8ba4ffedc0f93d35

#	Name	Туре	Data
0	proxy	address	0x6352a56caadC4F1E25CD6c75970Fa768A3304e64
1	implementation	address	0xE21328bd90De1433F99512608558ff9481D94Be2

Recommendations: Considering the issue of single signature address leakage, it is recommended to use a multi signature approach to control the ProxyAdmin contract to ensure that logical contracts are not maliciously replaced.

Status: Audited.

Fix Result: Info, This issue depends on the business logic, such as the adoption of MPC management solutions for EOA addresses.

Binenet.com

4.2 Rescue Funds

Severity Level: Info

Lines: OpenOceanExchange.sol # L3533

Description: Considering special cases such as users mistakenly transferring assets to a trading contract, the contract provides an emergency asset extraction feature, the logic of which depends on the business functionality.

```
function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
   token.universalTransfer(payable(msg.sender), amount);
}
```

Recommendations: Judging based on business logic.

Status: Audited.

Fix Result: ---

4.3 Swap Core Logic

Severity Level: Safe

Lines: OpenOceanExchange.sol # L3468

Description: By auditing the core logic of the swap, parameter checks and swap related preparations were carried out at the entrance, such as transferring assets to the core swap contract caller. All core logic of the swap was handled by the caller, and the contract address was in a custom state. After the swap was completed, the parameters and returnAmount variables were checked again to ensure that the swap function proceeded as expected.


```
3468 >
         function swap( --
3472
          external payable whenNotPaused returns (uint256 returnAmount) {
            require(desc.minReturnAmount > 0, "Min return should not be 0");
3473
            require(calls.length > 0, "Call data should exist");
3474
3475
3476
            uint256 flags = desc.flags;
3477
            IERC20 srcToken = desc.srcToken;
            IERC20 dstToken = desc.dstToken:
3478
3479
3480
            require(msg.value == (srcToken.isETH() ? desc.amount : 0), "Invalid msg.value");
3481
            if (flags & _SHOULD_CLAIM != 0) { --
3482
3485
3486
            address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver;
3487
            3488
3489
            uint256 initialDstBalance = dstToken.universalBalanceOf(dstReceiver);
3490
3491
            caller.makeCalls{value: msg.value}(calls);
3492
```

Status: Audited.

Fix Result: ---

4.4 SwapGmxV2 Core Logic

Severity Level: Safe

Lines: OpenOceanExchange.sol # L3468

Description: By auditing the core logic of swapGmxV2, this function is similar to the swap logic. It performs parameter checks and swap related preparations at the entrance, such as transferring assets to the core swap contract caller. All core logic of the swap is handled by the caller, and the contract address is in a custom state. After the swap is completed, the parameters and returnAmount variables are checked again to ensure that the swap function proceeds as expected.


```
3541
           function swapGmxV2(
3542
              IOpenOceanCaller caller,
3543
               SwapDescription calldata desc,
3544
              IOpenOceanCaller.CallDescription[] calldata calls
           ) external payable whenNotPaused returns (uint256 returnAmount) {
3545
3546
              require(calls.length > 0, "Call data should exist");
              require(msg.value > 0, "Invalid msg.value");
3547
3548
3549
              uint256 flags = desc.flags;
3550
              IERC20 srcToken = desc.srcToken;
3551
              IERC20 dstToken = desc.dstToken;
3552
              if (flags & _SHOULD_CLAIM != 0) {--
3553
3556
3557
              address dstReceiver = (desc.dstReceiver == address(0)) ? msg.sender : desc.dstReceiver;
3558
3559
               uint256 initialSrcBalance = (flags & _PARTIAL_FILL != 0) ? srcToken.universalBalanceOf(msg.sender) : 0;
3560
               uint256 initialDstBalance = dstToken.universalBalanceOf(dstReceiver);
3561
3562
               caller.makeCalls{value: msg.value}(calls);
3563
```

Status: Audited.

Fix Result: ---

4.5 callUniswapTo Core Logic

Severity Level: Safe

Lines: OpenOceanExchange.sol # L1631

Description: The callUniswapTo function is used for transaction processing of UniswapV2 related coin pairs. The function implements core functions such as parameter checking, verification, and swap internally.


```
1631
           function callUniswapTo(
1632
              IERC20 srcToken,
1633
              uint256 amount,
1634
              uint256 minReturn,
              bytes32[] calldata /* pools */,
1635
1636
              address payable recipient
1637
           ) public payable returns (uint256 returnAmount) {
              assembly {
1638
1639
                   // solhint-disable-line no-inline-assembly
                   function reRevert() {--
1640 >
1643
1644
                   function revertWithReason(m, len) {--
1645
1650
1651
1652
                   function swap(emptyPtr, swapAmount, pair, reversed, numerator, dst) -> ret {--
1684
1685
                   function callSwap(emptyPtr, token, srcAmount, swapCaller, receiver, min) -> ret {--
1686
1835
1836
1837
                   let emptyPtr := mload(0x40)
1838
                   mstore(0x40, add(emptyPtr, 0xc0))
1839
                   returnAmount := callSwap(emptyPtr, srcToken, amount, caller(), recipient, minReturn)
1840
1841
```

Status: Audited.

Fix Result: ---

4.6 uniswap V3 Swap To Core Logic

Severity Level: Safe

Lines: OpenOceanExchange.sol # L3202

Description: The uniswapV3SwapTo function is used for transaction processing of UniswapV3 related currency pairs. The function implements core functions such as parameter checking, verification, and swap internally, and also adds a callback function called uniswapV3SwapCallback.


```
3202
           function uniswapV3SwapTo(
3203
               address payable recipient,
               uint256 amount,
3204
              uint256 minReturn,
3205
3206
               uint256[] calldata pools
3207
           ) public payable returns (uint256 returnAmount) {
               uint256 len = pools.length;
3208
               address dstToken;
3209
               require(len > 0, "UniswapV3: empty pools");
3210
3211
               uint256 lastIndex = len -1;
               returnAmount = amount;
3212
               bool wrapWeth = pools[0] & _WETH_WRAP_MASK > 0;
3213
               bool unwrapWeth = pools[lastIndex] & _WETH_UNWRAP_MASK > 0;
3214
3215 >
               if (wrapWeth) { --
3218 >
               } else {--
3220
              if (len > 1) {--
3221 >
3227 >
              } else {--
3229
3230
               require(returnAmount >= minReturn, "UniswapV3: min return");
3231
3232
3233
               assembly {
```

Status: Audited.

Fix Result: ---

5 Audit Categories

Categories	Subitems
	Transfer token function
	Mint token and burn token vulnerability
	Contract logic function
	Mining pool deposit and withdrawal function
Business Security	Reasonableness of agreement amendment
	Functional design
	Dos caused by time
	Insecure oracles and their design
	Deployer private key leak hazard
	Compiler version security
	Redundant code
	Use of safemath library
	Not recommended encoding
	Use require/assert mistakely
	Fallback function safety
	tx.origin authentication
Comment Westmanshiller	Owner permission control
General Vulnerability	Gas consumption detection
	Call injection attack
	Low-level function safety
	Additional token vulnerabilities
	Access control
	Numeric overflow detection
	Arithmetic precision error
	Misuse of random number detection

Unsafe external call
Variable override
Uninitialized storage pointer
Return value call validation
Transaction order dependent detection
Timestamp dependent attack
Denial of service attack detection
Fake recharge vulnerability detection
Reentrancy Attack Detection
Replay attack detection
Reordering attack detection
3

6 Explanation Of Vulnerability Rating

Vulnerability Rating	Rating Description		
	Vulnerabilities that can directly lead to the loss of token		
	contracts or user funds include: overflow, reentrancy,		
	and false recharge. These issues may result in the token		
	value being nullified, or cause the loss of tokens		
	through fraudulent exchanges, or the loss of ETH or		
	other tokens, etc.		
High Diale Welmanahilitee	Vulnerabilities that can result in the loss of ownership		
High Risk Vulnerability	of token contracts include: flaws in the access control of		
	key functions and call injection that leads to the		
	bypassing of access controls for key functions.		
	Vulnerabilities that can cause token contracts to		
	malfunction include: denial of service vulnerabilities		
	caused by sending ETH to malicious addresses, and		
	denial of service vulnerabilities due to gas exhaustion.		
	Vulnerabilities that require specific addresses to trigger		
	include scenarios such as overflow, which can only be		
Madiana Diala Walaanah ilita	initiated by the token contract owners. Additionally,		
Medium Risk Vulnerability	there are access control flaws in non-critical functions		
	and logical design flaws that do not directly lead to		
	financial losses.		
	Vulnerabilities that are challenging to trigger include		
Low Risk Vulnerability	those that necessitate substantial amounts of ETH or		
	tokens, such as overflow vulnerabilities. Additionally,		
	there are vulnerabilities that, once triggered, do not		
	directly benefit the attacker, such as overflow exploits		

from which the attacker cannot profit. Furthermore,
there are transaction sequence-dependent risks, which
are triggered by specifying a high gas wait.

7 Statement

Binenet issues this report solely based on the facts that have occurred or existed prior to the report's issuance and assumes corresponding responsibilities for them. We cannot assess the security status of the smart contract for any facts that occur or exist after the report is published, and we will not be held responsible for them.

This report does not cover external contract calls, new types of attacks that may emerge in the future, or contract upgrades and tampered codes (as the project evolves, smart contracts may introduce new pools, functional modules, external contract calls, etc.), nor does it include front-end or server security.

Binenet assumes that the documents and materials provided by the information provider as of the date of this report are complete and unaltered. If the provided information is missing, tampered with, deleted, concealed, or inconsistent with the actual situation, Binenet shall not be liable for any losses or adverse effects arising from such discrepancies.

8 About Binenet

Founded in June 2023, Binenet is a dedicated and pure play blockchain security company. We focus on accurate, efficient, and intelligent blockchain threat detection and response. Committed to providing users with professional products and dedicated services in the field of blockchain security, our business functions include penetration testing, code auditing, emergency response, on-chain data monitoring, and AML (anti-money laundering), covering all aspects of blockchain ecosystem security.

Official Website

https://binenet.com

Telegram

https://t.me/binenetxyz

Twitter

https://twitter.com/binenetxyz

E-mail

team@binenet.com