

Smart Contract Audit Report

TronBank Project

V 1.0

SC.adbee5f41395

Nov. 23rd, 2025

Table Of Content

1 Report Overview	2 -
2 Asset Management Security Assessment	3 -
3 Audit Overview	4 -
3.1 Project Information	4 -
3.2 Audit Information	4 -
3.3 External Visibility Analysis	4 -
3.4 Audit Process	5 -
4 Audit Categories	6 -
5 Security Finding Details	8 -
5.1 Approve Function	8 -
5.2 Transfer Function	8 -
5.3 TransferFrom Function	9 -
6 Explanation of Vulnerability Rating	10 -
7 Statement	12 -
8 About Binenet	13 -

1 Report Overview

Binenet security audit has identified 0 significant security issues across the TronBank smart contracts.

Contract Code	Function	Security Level	Status	Fix Result

^{*}Risk Description: No obvious security issues found based on business logic.

2 Asset Management Security Assessment

Asset Type	Function	Security Level
User Mortgage Token		
Assets		
Users Mortgage Platform		
Currency Assets	- 	

*Description: Check the management security of digital currency assets transferred by users in the contract business logic. Observe whether there are security risks that may cause the loss of customer funds, such as the digital currency assets transferred into the contract are incorrectly recorded or transferred out by mistake.

3 Audit Overview

3.1 Project Information

TronBank is a decentralized financial platform built on the TRON blockchain, featuring its native TBK (TronBank Token) as the core utility token. The project leverages the robust infrastructure of the TRON network to provide users with efficient, low-cost, and transparent financial services.

TronBank aims to revolutionize decentralized banking services on the TRON network by combining the benefits of blockchain technology with user-friendly financial solutions. The platform provides a foundation for various financial services including lending, staking, yield farming, and cross-chain operations, all powered by the TBK ecosystem. With its commitment to transparency, security, and innovation, TronBank represents a significant step forward in making decentralized finance more accessible and efficient for users worldwide, while contributing to the growth and maturation of the TRON blockchain ecosystem.

3.2 Audit Information

Project Name	TronBank	
Platform	TRON	
	TBK	
Audit Scope	https://tronscan.io/#/token20/TR84L8oj3zt6NEZknUPerxZJyAALE	
	8XNSH/code	
Website	https://tronbank.pro/	

3.3 External Visibility Analysis

Function	Visibility	State Change	Modifier	Payable	Description
approve	external	true			

transfer	external	true	 	
transferFrom	external	true	 	

3.4 Audit Process

Audit time: November 22, 2025 - November 23 2025

Audit methods: Static Analysis, Dynamic Testing, Typical Case Testing and Manual Review.

Audit team: Binenet Security Team.

4 Audit Categories

Categories	Subitems	Status	Description
	Transfer token function	Pass	
	Mint token and burn token vulnerability	Pass	
	Contract logic function	Pass	
<i>p</i> .	Mining pool deposit and withdrawal function	Pass	
Business Security	Reasonableness of agreement amendment	Pass	
	Functional design	Pass	
	Dos caused by time	Pass	
	Insecure orcles and their design	Pass	
	Deployer private key leak hazard	Pass	
	Compiler version security	Pass	
	Redundant code	Pass	
	Use of safemath library	Pass	
	Not recommended encoding	Pass	
	Use require/assert mistakely	Pass	
	Fallback function safety	Pass	
General	tx.origin authentication	Pass	
Vulnerability	Owner permission control	Pass	
	Gas consumption detection	Pass	
	Call injection attack	Pass	
	Low-level function safety	Pass	
	Additional token vulnerabilities	Pass	
	Access control	Pass	
	Numeric overflow detection	Pass	

Arithmetic precision error	Pass	
Misuse of random number detection	Pass	
Unsafe external call	Pass	
Variable override	Pass	
Uninitialized storage pointer	Pass	
Return value call validation	Pass	
Transaction order dependent detection	Pass	
Timestamp dependent attack	Pass	
Denial of service attack detection	Pass	
Fake recharge vulnerability detection	Pass	
Reentrancy Attack Detection	Pass	
Replay attack detection	Pass	
Reordering attack detection	Pass	

Binenet.com

5 Security Finding Details

5.1 Approve Function

Severity Level: Safe

Lines: TBK.sol#L58-L61

Description:

The approve() function allows a token owner to authorize a spender address to

transfer tokens on their behalf up to a specified amount. The function sets the allowance

mapping that tracks how many tokens the spender can transfer from the owner's balance.

This enables delegated token transfers, which is essential for DeFi protocols, DEXs, and

other smart contracts that need to move tokens on behalf of users. The function emits an

Approval event for transparency and follows the ERC20 standard implementation.

Recommendations: ---

Status: Audited.

Fix Result: Known.

5.2 Transfer Function

Severity Level: Safe

Lines: TBK.sol#L53-L56

Description:

The transfer() function enables direct token transfers from the caller's address to a

specified recipient address. It internally calls transfer() which validates that the sender

has sufficient balance, updates the balances mapping, and emits a Transfer event. This is

the primary method for users to send TBK tokens to other addresses without requiring any

third-party authorization. The function implements standard ERC20 transfer functionality

with balance checks and event emissions for blockchain transparency.

Recommendations: ---

Status: Audited.

-8-

Fix Result: ---

5.3 TransferFrom Function

Severity Level: Safe

Lines: TBK.sol#L63-L67

Description:

The transferFrom() function allows a spender (typically a smart contract or approved address) to transfer tokens from an owner's address to a recipient address, provided that

the spender has been granted sufficient allowance by the owner. The function first calls

_spendAllowance() to verify and deduct the allowance, then executes the transfer. This

mechanism enables automated token movements by DeFi protocols, exchanges, and other

contracts that have been pre-approved by token holders, facilitating complex financial

operations while maintaining user control through the allowance system.

Recommendations: ---

Status: Audited.

Fix Result: ---

6 Explanation of Vulnerability Rating

Vulnerability Rating	Rating Description		
	Vulnerabilities that can directly cause the loss of token		
	contracts or user funds, such as: overflow , reentrancy ,		
	false recharge, which can cause the value of tokens to		
	be zeroed, or causing false exchanges to lose tokens, or		
	causing losing ETH or tokens, etc;		
	Vulnerabilities that can cause loss of ownership of		
High Risk Vulnerability	token contracts, such as: access control flaws of key		
	functions, call injection leading to access control bypass		
	of key functions, etc;		
	Vulnerabilities that can cause token contracts to fail to		
	work properly, such as: denial of service vulnerabilities		
	caused by sending ETH to malicious addresses, and		
	denial of service vulnerabilities caused by gas		
$\Delta \mathcal{N}$	exhaustion;		
	High-risk vulnerabilities that require specific addresses		
	to be triggered, such as overflow that can only be		
Medium Risk Vulnerability	triggered by token contract owners; access control flaws		
	of non-critical functions, logic design flaws that cannot		
	cause direct financial losses, etc;		
	Vulnerabilities that are difficult to be triggered,		
Low Risk Vulnerability	vulnerabilities that cause limited harm after triggering,		
	such as overflow vulnerabilities that require a large		
	amount of ETH or tokens to be triggered, vulnerabilities		
	that the attacker cannot directly profit after triggering		
	overflow, and transaction sequence-dependent risks		

triggered by specifying high gas wait;

7 Statement

Binenet only issues this report based on the facts that have occurred or existed before the issue of this report, and assumes corresponding responsibilities for it. For the facts that occurred or existed after the issuance, we cannot judge the security status of the smart contract, and we will not be responsible for it.

This report does not include external contract calls, new types of attacks that may appear in the future, and contract upgrades or tampered codes (with the development of the project side, smart contracts may add new pools, new functional modules, new external contract calls, etc.), does not include front-end security and server security.

The documents and materials provided to us by the information provider as of the date of this report.

Binenet assumes that there is no missing, tampered, deleted or concealed information provided. If the information provided is missing, tampered, deleted, concealed or reflected inconsistent with the actual situation, Binenet shall not be liable for any losses and adverse effects resulting therefrom.

8 About Binenet

Founded in June 2021, Binenet is a dedicated and pure blockchain security company, focusing on accurate, efficient and intelligent blockchain threat detection and response. Committed to providing users with professional products and dedicated services in the field of blockchain security. Business functions cover penetration testing, code auditing, emergency response, on-chain data monitoring, AML anti-money laundering, etc., covering all aspects of blockchain ecosystem security.

Official Website

https://binenet.com

Telegram

https://t.me/binenetxyz

Twitter

https://twitter.com/binenetxyz

E-mail

team@binenet.com